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FOREWORD

ihis report was prepared by the Grumman Aircraft Engineering Corporation, Bethpage,
Gew York, under contract NAG8-2113, entitled, "Computer Program for Analysis of
¢hell Structures". The work was performed by the Structural Mechanics Section of

Ingineering and the Digital Computing Section of Management Information Systems.

The zuthor wishes to acknowledge the contributions of the following individusals:
or, lLarry Harris for contributing portions of Appendix A, Mr. Michael Shulman for

~hecking major portions of the derivations, and Mr. William Mueller for overall

contract coordination.

This volume is devoted to a presentation of the theory and numerical techniques
developed for implementation as a digital computer program. The user's information
for the actual program is presented in two separate volumes: "Numerical Analysis
of Shells, Vol II: A Users Manual for STARS II - Shell Theory Automated for
Retational Structures II - Digital Computer Program", by V. Svalbonas and N.
Angrisanoc, and "Numerical Analysis of Shells, Vol III: Engineer's Program Manusl for
STARS II - Shell Theory Automated for Rotational Structures II - Digital Computer

Program', by N. Angrisano, F. Hughes and V. Svalbonas.
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INTRODUCTION

The STARS II digital computer program is an automated procedure for the analysis of
thin orthotropic shells of revolution, reinforced in various ways, and subjected to
unsymmetric loads. The program can treat shells having multiply-connected joints,

walls of sandwich construction, and thermal variations through the walls.

The theory presented in this report and the techniques used for the unsymmetric case
are the ocutgrowth of work that began at Grumman in the early sixties (References 1
and 5). Much of this report involves modification of relationships that appear in
Reference 5 to include orthotropic effects (Section 5 and parts of Section 6 are
taken directly from that work). The basic shell theory is based upon the work of

J. Kempner (References 2 and 3).

The partial differential equations are derived for the general unsymmetric case.
They are then reduced to ordinary differential equaticns by a Fouriler series expan-
sion in the circumferential coordinate. These equations are specialized to several
convenient cocrdinate systems, and rederived to represent various reinforcement

cases.

The shell is divided into segments of common analytical form, cylinders, cones,
ellipsoids, ogives, parabolas, or any special function desired. Influence coeffi-
cients are calculated for each segment by combining unit sclutions obtained by
forward integration using a Runge-Kutta procedure. Since influence coefficients
cannot be accurately computed for segments that are too large, the size of these
segments is limited by the accuracy of calculation desired. This accuracy is de-
termined by checking the symmetry of the resulting stiffness matrices. The segments
are then elastically coupled by conventional matrix methods intec regions. These
regions are determined by shell branch points and concentrated line loadings. The
regior. matrices thus obtained are first reduced, and then coupled elastically to
forr. structure stiffness matrices. These matrices are inverted to get flexibility

metrices which are used to obtain deformation conditions at the ends of each region.
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@2 defermations are used as initial conditions for the final forward integration
“Lrough each segment, thus yielding the displacements at points throughout the

structure. Finally, the stress distributions are obtained, using the total

displacement, patterns.

ihe required input data is relatively simple, consisting of specification of

geometry, material properties, loads and support conditions.

The output is in a
form directly usable by the stress analyst, that is, stresses and displacements

.

2% various points on the shell.
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SYMBOLS

LOWER CASE LATIN

semi-diameter in ellipsoid (in.); index on applied loads
semi-height in ellipscid (in.); index on boundary conditions
offset in ogive (in.); cosine function

differential

distributed load in local coordinates (lb/in.z); stress resultant
matrix in local coordinates; parabolic geometry constant

thickness of face sheet in honeycomb shell

index: ©beginning edge of shell segment; independent joint of
kinematic link; subscript "inside"

index: ending edge of shell segment; dependent Jjoint of kinematic
link

segment stiffness matrix; lineal forces due to displacements;
curvature

length (in.); load matrix

mass (slugs); distributed moment (in.-lb/in.z); index on nodes
dimension of matrix; index on harmonic

subscript "outside"; subscript "reference surface"

distributed load in global coordinates (lb/in.2); index on
distributed loads

number of degrees of freedom
radius

index on segment; sine function; meridional coordinate in cylinder
or cone; arc distance

index on topological arrangement; core thickness in honeycomb
shell

circumferential displ.acement, positive by right-hand rule about
7 axis (in.)

meridional displacement, positive in direction of increasing ¢ (in.)

normal displacement, positive inward (in.)




SYMBOLS (Cont)

UPPER CASE LATIN

number of applied loads

number of different sets of boundary conditions
constant; bending-membrane interaction stiffness
shell flexural stiffness (in.-1b)

Young's modulus (lb/in.g)

subseript "free;" lineal force (1b/in. of circumference);
distributed load in nonlinear cases
shear modulus (lb/in.z)

total shell thickness (in.)

moment of inertia (in.h)

effective transverse shear stress resultant (ib/in.)

shell extensional stiffness (1b/in.); shell stiffness matrix
load matrix; fixed end forces due to distributed losd
bending moment on shell (in.-1lb/in.); number of nodes
membrane force (1b/in.); number of harmonics

number of distributed loads

transverse shear stress resultant (1b/in.)

radius vector; subscript "region"

number of segments

effective membrane shear (1b/in.); number of topological arrange-
ments; subscript total; temperature

amplitude of sinusoidally varying u

amplitude of cosinusoidally varying v

amplitude of cosinusoidally varying w

Cartesian coordinate, 6 = 0 at X axis; matrix defined in Section S
Cartesian coordinate; matrix defined in Section 5

Cartesian coordinate, coincides with axis of revolution




SYMBOLS (Cont)

GREEK

coefficient of thermal expansion (deg—l)

o

. B b/e - ratio of semi-height to semi-diameter of ellipscid
Y shear strain
§ matrix of displacements in local coordinates

' € extensional strain
4 normal coordinate, positive inward
8 circumferential angular coordinate (rad)
v Poisson's ratio
o} dimensionless radius; position vsctor of shell relative to

inertial frame (in.)
o normal stress (lb/in.z)
T shear stress (lb/in.2)
¢ meridional angular coordinate (rad)
w rotational displacement (rad)
A displacements in global system
Q amplitude of cosinusoidally varying w
MISCELLANEOUS
A denotes total forces, 2nr0 times lineal force
i . denotes partial differentiation
* pre-superscript, denotes nonlinear terms
\
SUBSCRIFTS
' eq equivalent
NOTE

Other symbols are defined in the text where they appear.




SECTION 1

FORMULATION OF SHELL EQUATIONS

EQUILIBRIUM EQUATIONS

The equilibrium equations which are derived in general form in Reference 2
by means of the variational principle, are of the accuracy of Love's first
approximation as medified by E. Reissner. The reduction of these general
equations to the special case of shells of revolution is given in Refer-
ence 3, page 8. They are repeated here as Equations l-la through 1l-le.

It shoula be noted that the equilibrium relations have been written in

the undeformed coordinate system. See Figures 1-1, 1-2, and 1-3.

) r. sin¢$ = -r.r.f

10 - . —
2, PNy o v (BT QT 1%0%s

2:F¢ = : (N¢ C) 9 * r1N¢e,e - Ner1 cos ¢ - rOQ¢ = —rlrof¢

Z:FC = : (Q¢r0)’¢ + rlQe,e + rON¢ + Nerl sin ¢ = —rlrofC

E:Me Poery ®e 0 ) s * Mgr, cos ¢ + r,r Q¢ =
2:“@ : -(4*6 0 g = rlMB,e - M¢6r1 cos ¢ + rerQ

where commas denote partial differentiation, e.g.,

2 -3 2
(NoaTo™) sy =35 (NagTo”)

The distributed loading terms, "f" and "m", are dimensionally in terms of
force/unit srea of middle surface, and (force x length)/unit area of
middle surface. Distributed moments occur, for example, in threaded
connections in pressure vessels or fittings where they are associated with

tangential loads applied away from the middle surface.




It should be noted that the sixth equilibrium equation:

M M
EM =0 : Ne - N¢ +_8_¢ +.ﬂ= 0 (1-2)
5 b 0 r, ry

fs not included with the set of equilibrium equations since it will only
Le satisfied vhen g/r is not neglected in comparison with unity in ex-
pressions for stress-resultants and strains (Reference 4, pages 5, 6, and
317). As will be seen later, for the case of [ << risT, the physical

definitions of the stress resultants lead to N and M = M

60 = Vo 00 = "Mee"
In this approximate theory then, the equation is identically satisfied in
the special case when ry =T, (sphere). Otherwise, the equation is

violated.

STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relations (Reference 3, pages 10, 34, and 39) are

presented as follows:

24 =—%—(u,e + Vv cos ¢ - wsin ¢) (1-3a)
o) 0
£y =1 (v, - w) (1-3b)
0 rl ¢
v, r v,, -u cos¢ Usy
Y¢e=re+—£—?_— = er += (1-3c)
[} 0 1 Q b 0 1
Wy == (Ww +v) (1-3q)
1
w
9 u 1
w, = = (— +=—) = -=—(w,. +u sin 9) (1-3e)
$ g r, T, ’
o
kg = -TO (w¢’e - wy cos o) (1-31)
=
k‘b =< me,‘b (1-3g)
1
1 o
kcpe = ke¢ = 2r0 [me’e -—r;w¢’¢ *+ wg cos ¢ (1-3n)
1-2

]
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where the geometric relations

r0’¢ =71, cos $ r. =r, sin ¢

have been used.

STRESS-STRAIN RELATIONS

The stress-strain relations (Reference 3, page 32) are obtained by em-
ploying Hooke's Laws and assuming that dimensions "z", normal to the middle
surface, are much smaller than the radius of the shell. In this case,

orthotropic relations will be used to increase the usefulness and applica-
bility of the analysis.

E
i]
g, = ————e, +v e, -g(k+v k,)-(a.+v. .0 )T] (>-kLa)
8 1 - v¢e»6¢[ 60 0% ¢y B 6 ¢ 6 6 ¢
E¢ )
0, = ———|¢ + v, e, - ¢lk+v k)= (a,+v a T‘] (1-4b)
¢ "1 - v%vm[@o LT} eo ¢ ¢0°86 ¢ ¢80 €
oo Gyg [y¢eo - 2ck¢e] {1-hc)

where ¢, k and vy are functions of 6 and ¢ only. But «, T, E and v may,

in general, also be arbitrary functions of . Thus, the stresses, o and T,
are arbitrary functions of the thickness coordinate. These equations
assume that the thickness is negligible compared to the radii of curvature,
rl and r2. If this assumption is not made, but normals do remain straight
and normel, then strains (and stresses) are not linear functions of g,

even with constant o, E and v. This is the same phenomenosn that occurs in
curved beams. (Refer to Reference 2, page 29 and Reference kL, page 316.)

For present purposes, only T will be allowed to vary in the z direction.

1-3




STRESS RESULTANTS

Again neglecting thickness in comparison with the radii of curvature

{Reference 3, pages 33, 34),

-foe dz, -j.oec dg
f o¢ dz fooc dz
= *Ngo ’f‘w a4z Moy = *f‘epe‘ dc
—[ Eg Sag +vve¢u¢)Td; / Eg (ae + VW%)T;Q; (16)
40 9¢

" VeuYes
" (a, + v¢eae)Td . E¢ (a¢ + v¢6a9)T
1 ¢ Mg =

rdg
1= VegVae

96”04
where the integrals are taken over the entire thickness. Neglecting "z"
compared to "r" ignores the fact that, for an elemental length ds along the
median surface, the lamella inside and outside the median surface are
shorter ar longer than ds. {Refer to Reference L, pages L and 5.) If this
effect is considered, and the radii associated with the ¢ and 6 directions

are unequal (rl # r2), then Ne0 # N¢e and M9¢ # -M¢6'

The following general definitions of extensional, bending, and in-plane

shear stiffnesses are introduced:

Eh

Eeh

{ - )
12(1 vwve0
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“he definitions for rigid-core sandwich configurations of various con-
struction are presented in Figure 1-k.

Combining Equations 1-4 through 1-T yields the stress resultants as

functions of the strains, curvatures, and temperatures.

BQUNDARY CONDITIONS

The required boundary conditions at a plane of constant ¢ are ottained as

It is neces-
sary to specify either displacements or corresponding stress resultants.

a result of the variational procedure (Reference 3, page 28).

M
or [N¢e —-?29 sin ¢ (1-9a)
0

(1-9v)

(1-9¢)

(1-94)




In view of the form of the boundary conditions (Equation 1-9), the
equilibrium equations are re-formulated in terms of the "effective stress

resultants", T, N, J and M. where,

$8 "9’ "¢
- _ sin
T = N¢e - M¢8 T, (1-10a)
N, =N, (1-10b) )
Myo,0

5, =9 +-{}4— (1-10c)

(p O 1]
M¢ = M¢ (1-104)

The partial derivatives of T¢e and J¢, which will be required later, are:

T¢e,¢ - N¢6,¢ sin ¢ sin ¢ cos ¢ cos ¢

- M + M g M (1-11a)
rl rl 60,9 rorl ¢0 rO ¢80 rorl

J Q M

;D‘a‘b = f"$ + r"gteQ - Mq)e e ios (l-llb)
1 1 01 ’ 0

FINAL EQUATIONS

By eliminating strains and curvatures and utilizing the orthotropic identity

ve¢Ea = “¢6E¢’ each stress resultant is expressed ia terms of displacements

and other stress resultants. From Equations 1-3 and 1-8:

= 2 _ .
Ny = vag Ny * (Kpy = vye® Kpo) o, Noa * Vae Mo
) Usg + vcos ¢ -vwsinid
= vy Ny * (Kpy = Ve Kpp) T - Npg * V4o Npo )
(1-12a)
1-6 {

Y

E:




- ucos u,45
+ —

I'O rl

2
= Vgp Dpp) Ky = Mpy ¥ vy My

2 .
- V4 D22) [w,ee + U, sin ¢

r

o T + we cos ¢]

o]

0
M -—— +
46 “e,6 T “0s0

9

Using Equations 1-3d, 1-10a, and 1-12¢
Py

v v
=33 .0 u cos ¢ sin ¢ 9
Mo = Yo,0 * [(”e,e - =) +(

sin ¢ T

¥ T 1 To "o

2
M _ sin ¢
0 2
+ % - )+ u cos °]- ios ¢ (w,e + u sin 0)}

33 °0 1 0
)' Vg sli-n : "L)
0 LB

(1-13c)




L]
rxpansion of the equilibrium egquations yields:
r

n + 20, cos¢+ N —O-Q sin ¢ + r f_ =0 (1-1ka)
9,0 6 $6,¢ rl (¢} 08

o o
d N ~ - — = -
I‘~$,¢—r_1' + N¢ cos ¢ + N¢e,e - N, cos ¢ Q¢ N + r0f¢ 0 (1~1bv)

o o
U "1 *Q, cos¢+ Qo+ N¢Tl * Ny sino+ ryf =0 (1-1ke)

1
o
'M¢6,6 - M¢’¢-?l— - M¢ cos ¢ + M, cos ¢+ Q¢r0 = - rgm (1-1ka)
Yo

Mg o7 - Mg oSO Mg o+ QT = - T, (1-1ke)

1

A set of eight partial differential equations of first order in the inde-
pendent variable, ¢, will now be obtained by appropriate substitution of the
previous equations. The first four of these equations result directly from
the equilibrium equations. Combining Equations 1-1lla through e with

Equations 1-10 and 1-11 yields:

: T N
# $8,¢ _ _pp Sos $__9,8 + M sin g» -M cos ¢ _l__ _5sing
r $9 r r 0,0 2 $6 r T r

1 0 0 ro 0 1 0

2

-f -n Sin¢ (1-15a)

& ¢ o \

" N ¢ cos ¢ [o]e] Ttbe 5} sin ¢ 1 :
g N r *Ne ISJ r, ‘Mee[ 2+ T, :
1 L 0 0 9, r,2 T

3 +_rT- f¢ (1-15b)

R




[ ]
J@ ® cos ¢ sin ¢ N¢ Me L] ces ¢ m¢ ]
LA, - -2 - oM - f 422
r* ¢ rO [5} ro rl ro ¢$6,0 ro 4 rO
(1-15¢)
M M
$s¢ _ cos ¢ _ cos ¢ _ $0,0 N
- My M¢ - 2— +J¢ +my (1-154)

0 0

The remaining four equations involve differentiation with respect to ¢ and

are obtained from Equations 1-34, 1-10s, 1-12b and c, and 1-13b.

u, u cos ¢ v, T M sin ¢
.__@. = — _0 + Ele_ + _}ﬁf(— (1—168.)
1 o o 33 Yo "33
o -1
- ( oy 2 - _ .
v, T Ve T Ve <) Ny = Veolo * Moy = Voo're (1-160)
w’
";¢i= ) - (1-16c)
1 1
w -1
8,6 _ 2 ) i
T (Dze Vae P11 g'Mqa * VoMo = Mpy * "e¢MTe‘- (1-164)

In order to obtain a complete set of equations, the following auxiliary

equations are necessary:

Ne=v N +(Kll—

° ) Usg + v cos ¢ - w sin ¢
46 ¢

r, ] - NTe * Vo0 NT¢

[1-17a)

1-9




2
(D y = v, D )[w, +u,, sin¢ ]
11 $6 22 L] 0
Mg = Veplly - + w, COs ¢
e $0 ¢ rO ro 2]
= Mpg ¥ VeeMrg (1-17b)
= -1 cos¢ cos ¢ sin ¢ sin ¢ 1 '
M 2w + u - ool ———
¥ ‘o siny g 8.9 1 o ®\ o T
+
33 To "33 .
cos ¢ T¢e
= EW’ + Sin¢ (1-170)
6 ry K33
oo
Moo = Tgo T T, Sn¢ (1-174)
w’ .
o = - _’6 _using (1-170)
b ry T,
M
$6,0
=dy Ty (1-17¢
% ¢ Ty 7f)
gin ¢ 1
2 ccs ¢ (ro K33 + D33 —;———) - -
Q. = 3 cos¢ _ 1 M . 1 -
° o r 2K, +D sin2¢ 96 Ty sin® 6,04
0 33 33 Tt x
33 70733 :
3
. cos¢ _cos ¢ sin ¢ N sin2¢ _ cose¢ _ sing _ rl,@ cos ¢ .
AR "o Yo To ! r.?
1
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2 . .
rl cos ¢ sind sin ¢ 1 cos ¢ rl sin ¢ cos ¢
+ - v —_— | - v -
r 2 ’8¢ r, r ’8 ry N 2
0 0
r si r cosg¢
1,6 cos ¢ ing 1)
- b + QV,
2 0¢ ry 9 Ty r 2
! 0
sin ¢ cos ¢ 0,6
+ T + T + -m (1-17g)
08,6 Ko 40 K5 T, )

These auxiliary equations could be included in the eight partial differen-
tiel equations by direct substitution, and indeed in the case of Equatinns
1-17d4 through g this has already been done. However these quantities are

also of technical interest and computing them separately is desirable,

The equations presented above constitute a complete formulation of a con-
sistent first-order thin shell theory. Techniques for the solution of this

set of equations are given in the following sections.

i-11
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Figure 1-1. Shell Element Geometry and Displacements
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Figure 1-2. Forces On Shell Element
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SECTION 2

FOURIER ANALYSIS

Efficient techniques for the numerical solution of partial differential
equations are not readily available. However, by assuming a Fourier series
distribution in the circular coordinate, b, it is possible to reduce the
solution to "N" sets of ordinary differential equations. Usually the num-
ber of sets (harmonics) that are required to solve practical problems is
rather limited. The actuel number will depend upon the type of load dis-
tribution being investigated and the degree of accuracy demanded. By
restricting consideration to cases symmetric about 8 = 0, only "one-half"
of the general expansion is needed. By physical reasoning, (or complete
expansion of the series), the appropriate function (sine or cosine) may be
chosen. The choices are verified when the trigonometric functions may be

factored out of the differential equations.

The reduction of the system of partisl differential equations to sets of
ordinary differential equations is most convenient since these equations

may nov be solved by employing a standard numerical integrating procedure

such as Runge-Kutta.

The expansion of the previously developed partial differential equations
into sets of ordinary differential equations will now be discussed. The

appropriate series expansions for the quantities of interest are:

u = U(O) + ngl U(n) sin n@ Ng = ngo Na(n) cos nb
v = nko V(n) cos nb N¢ = nzo N¢(n) cos né
wo= nzo W(n) cos nf N¢9 = N¢e(o) + nzl N¢O(n) sin nb
wg = nZO ue(“) cos ab Me = nzo Me(n) cos nd




w, = Q¢(O) + ngl 9¢(n) sin no M¢ = ngo M¢(n) cos nf

£, = fe(O) + B fe(“) sin nd Myo = M¢e(0) + B Mw(“) sin ng

f¢ = nzo f¢(n) cos nb Q8 = Qe(O) + 21 Qe(n) sin né .
fC = nzo fC(n) cos né Q¢ = nzo Q¢(n) cos nb

My = nzo me(n) cos né T¢e = T¢e(o) + nzl T¢e(n) sin nd

m¢ = m¢(o) + nzl m¢(n) sin neé J@ = ngo J¢(n) cos né

NTe = ng NTe(n) cos nb MTO = ngo MTG(n) cos nb

N’N = nzo NT¢(n) cos nd M’N = nzo MT¢(n) cos nb

T = nzo T(n) cos nb (2-1)

FINAL SET OF EQUATIONS

Substituting these equations into the sets of partial differentisl equations é
(Equations 1-15, 1-16, and 1-17) will yield the final harmonic form of the :

equations required. PR

Differential Equations

When n =0, 1, 2..., then

(n) N {n)

T .
49,4 = _op (n) cos ¢ n 2 - (n) sin $_u {(n)} cos ¢[l_ _ sin §|
ry $0 ry T, ] r02 LX:] rs |fa Ty J 1
(n) (n) sin ¢ \
- fe - m¢ - (2-2)
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2 |

{n) cos ¢ (n) cos ¢ rY:] (n)fsin ¢ 1
- N OS¢ -n - oM sin¢é¢, 1
¢ rO 8 ro ro $0 [r02 r0r1]
1 (n)
s 2 _ p(m)
r ¢
1
N (n) M (n)
J(n)cos¢_N(n) sin¢ ¢ +n2 (] - on M (n) cos ¢
¢ ro ] r, r1 r $8 r
0 o]
(n)
nm
_pn) e
[ rO
M (n)
=Me(") =0 M‘p(“) R B J¢(n) + me(“)
Q 0 0
(n) (n) _.
U(n) cos ¢ +n V(n) + Tge + M¢e sin ¢
%o To 33 ToX33
W(n)+(K -y 2 )-I{N(n)_ N(n)+N (n)_v N(n)}
r 22~ Vgp M1 ¢ Yoo 0 T¢ 8¢ TO
(n) V(n)
g T Tr
1
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Auxiliary Equations

When n = G, 1, 2...

, then

cos ¢ - W

o

(n) sin ¢]

(2-3)

(n)

sin ¢ ~ ngw

-1

ri+ sin ¢
D

33

+ nV(n)(

(n)
+ Mw

(n)

(n)

D,,) (n)
22 [nU ”’e(n) cos {l

To

(n)
* Veg My

{_ane(n) . yln) (

cos ¢ cos ¢ sin ¢
1 o

ro K33

(n) sin ¢

)

33

sin ¢

To

2nu(®) 298¢ 4 ¢

1
+
T 0 40

1

)+
sin ¢
To

sin ¢




ik R

i -1
2cos ¢ (r, K. +p_ 5in ¢') —-—
~ {n) 3 cos ¢ 0 733 3 07 {n) Ty (n)
g T - > > M¢8 +-—————————§- —QnQe o
C r.” K.+ D, sine r sin“¢ ?
0 33 33 0 +
P33 Ty Kag
. 2
+ 0 tn) ( cos o _ cos ¢ sin ¢) + yin) ( sin _cos'e
¢ r o Ty Ty
r cos2¢ sin ¢
) _sing T1,0 ©08 ¢ + L + nv (n) [ sin ¢ +
1 r 2 r 2 * Yo 1
1 0
) . nv(“) ( cos o rl sin ¢ cos ¢ ) rl,®
o] r 2 r 2
0 1
r c052¢
+onw, (M) cos e,y (sing T
r0 o] r 2
0
(n)
+ 7 (n) sin ¢ +7 (n) cos ¢ _ Mg Y
{
Ir m¢(0) =1, ) 20, then Q.9 o,
n Fer th

e axisymmetric case, the problem is defined by only one harmonic, n = 0.

For an unsymmetric problem, the required harmonics may be superimposed, and

\
again, only one set of ordinary differential equations need be solved at
i a2 time.
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SECTION 3

FROGFAMMED EQUATIONS FOR VARIOQUS CONFIGURATIONS

The differential equations actually programmed are given below for shell
shapes using the coordinate angle ¢, and for the cylinder and cone, which

use the meridional distance coordinate s.

INDEPENDENT VARIABLE, ¢

(n) {n)

%él Tso,6 = op e(n) cos ¢ Ni ) nMe(n) sin2¢ - M e(n) cos ¢ [l_ _sin ﬂ
) Ty ¢ o 0 r, b o "1 Yo
o _e ) _(n) sing (3-1)
- 8 [ r
i 0
o (n)
y () _(n) cos ¢, Ne(n) cos ¢ 49
2o ¢ To To Ty
1 ) 7 {n)
(n sin ¢ 1 b (n)
- pM + + - f
49 [ r 2 I'01”1] 1 ¢
0
5 (n) (n) y ()
g $,¢ _ (n) cos ¢ (n) sin ¢ ¢ 2_8
o r - _J¢ +— ~ Y r Sy tn 2
= 0 0 1 r
0
(n) (n) )
n) cos ¢ n $
- 2n Mo - 1, + = \
r 0
0
. y (n) M (n)
_‘L.(P__ = M (n) ﬂ.‘? - M (n) M - 2n 4'6 +J (n) +m (n)
rl ¢} T, [ ro 0 ¢ (2]
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; 2,,(n)
sin ¢ - nW (n)
+ 0 cos %]

0

{~2nne(n) + U(n) (COS ¢ _cos ¢ sin ¢)




o (n) (n) (n) sin ¢
h@'U = T¢e +M¢>6 =
Q
) a2 (n) sin ¢
¢ ry r,
{(n)
n (n) = J (n) nM¢6
* ¢ T r
¢ 0
sin ¢
2cos¢<r K + D —-——)
oW al3cose B B n N m
¢ r 2 2 96
0 r, K33 + D33 sin"¢
-1
r
+ __“__l;—-—zr—- -2nQ, ¢(n) + U,¢(n) c:s ¢ _ Cosr¢ sin ¢
¥, sin ¢ ’ 1 0
p.. Yr x
33 To "33

2
rO ro rl r 2 r -

2 s
+ yln) ( 8in%¢ . c052¢__sin o _ T1,9 °°° ¢ 1r)cos¢ sin o >
1 0

+ nv (n) sin ¢ + L + nv(n) cos ¢ - rl sin ¢ cos ¢ _ rl,¢
o N Tq 2 2

2
+ ogy. (n) cos ¢ o) ( sin ¢, Ty cos ¢)
\

’

¢ Ty 0 r02
. oM )

T (n) sing¢ , 7 (n) cos % _ e m (n)
68,0 K 00 X T b
33 33 0

- I
s )
i 2 () L fO(O) = 0, then Q () _ 4.

When using Equaticns 3-1, it is necessary to specify the functions ro(o),
r (), =nd rl(¢),¢. For completeness, these functions and r,(¢) are given

for the various analytic forms.
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n_n

©ilipscidal (Figure 3-1;: When 8 = b/a, 8 = 1 for a sphere, and "a and

1o

are gisen data, then:

for sphere

Sgival {rigure 3-2): When "rl" and "¢" are given data, then:

1,4

siified" Ellipse Shape (Figure 3-3): When "n" and "a" are given data, and

she range is 1 2 n 2 - 1, then:

1

o 1 +n
sin(l + n)Q

-(2 + n) %sin(n)¢> cos cp(

1 + sin




(v
"3

HUE Y t/a = 0,707
n o= bra = 0 006
no= -t b/a = 0,539
noe =1 b’/a » 0.613
Faraboii~ {Flgure 3-i): When the given parabolic equaiicn is z = f‘l
+ f.r + f3:"' and "t‘l", "f,", and "f‘?" are given input data, then:
~tan ¢ + f
ro = ——r (3-5)
3
r 2 0
2 sin ¢
3
. _ =Sec™®
L of
3
L
r - -3 zec } sin 2
1,¢ 2f3
i CYLINDRICAL, s MEASUREL OPPCSITE TO GLOBAL COORDINATE Z (Figure 3-5)
| (a) (n) (n)
a1 . N, M
pes _ 9 9 (n) 1 (n)
. —ds— 2 +n !’n -0 > - fe - ?- m" (3'6)
. ' r 0
Q
(n) (n) {n}
an . Dpe Moo (n)
* 3 -n - n -f
% is Ty r 2 ]
Y ) 0
- . .
o | g (n) y (n) n (0
—2—- . - * n2 —9 - f () +n L
d r P 4 r
0 r0 0
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f (O)= 0, then QB( ) =

8 0.

CONICAL, s MRASURED ALONG MERIDIAN FROM APEX (Figure 3-6)

(n) (n)

av nM sin ¢ b (n) tan ¢

+

yl
— - * - 92 z 5
s cos ¢ s

36




(n) (n)
ib{n> . U(n) nv(n) . ?QQ . M¢e tan §
ds T s s cos ¢ K33 KBSS
atn) 2yt (n) (n) (n) (n)
s = (hgz = Voo Kll) { Nooom = vgeNg  * Tigg VaeNTg }
ey )
E{ - Qe(n)
{n)
[519] =1
a _ 2 (n) (n) (n) (n)
ds B ( Voo = Ve P2 ) {'M¢ *vgeMe T Mg * VeeMme }
(n) (n) {n) _.
- (n) (n) 2 nu + v cos ¢ - W sin ¢
Ny = Veely  * ( K1~ Ve Koo ) [ s o8 ¢
(n) (n)
- Npg  * Vaolpg
o
(n) _ N (n) _ (Dll MY D22) nU ) sin ¢ - nzw(“) + 0 (n) cos &
‘8 T Y48 ¢ s cos ¢ s cos ¢ 8
(n) (n)
= Mpg Tt vegMng
L) -1 oo () ') sin o, nv!®) tan o, 2aw'™
b - . ] 5 s s
s cos ¢ , sin $
953 K33s cos ¢
T (n) sin ¢
40 .
L z
33
(n)
M
. {a) _ (n) Y]
Ha = T@S + S tan ¢
{n) (n)
, (n) - nW _ U
1 3 cos b s tan ¢
{n)
nM
Q (n) J (n) _ 98
$ L] $ Cos ¢
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i3 e ©

Il i
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‘

B

1 ]
2 -1
2K_.s cos ¢ (n)
qu(n) - g _ 3313 p | (n) ,|s cos ¢ . sin2¢ Qndﬁe
y H33chos'¢+D335in ¢ 66 D33 K335 cos ¢ ds
(n) . , . (n) (n)
_4au sin ¢ U\n) sin ¢ | dV tan ¢ nV tan ¢
ds 5 2 "3 -
s S 2
s s
(n) {n)
Jan ™ g (n) AT nMy n (n)
s ds s2 ds K33 s cos ¢ ¢
If n (o) =f (0) = 0, then Q (0) _ 0
¢ 8 i ] -

All the above equations are written in terms of stiffness parameters (K and D)
rather than explicit geometry. This is due to the fact that a variety of
crossection geometries are to be considered, specifically those described

in Figure 1-4. However, one more option is available (described in detail

in Section ) and ReferenceT): that of inputing the K's and D's representing
any shell wall construction directly intc the equations. With this option
there becomes available an analysis for a great multitude of shell wall con-
structions. (In this respect refer to Section L.) With all the geometries

available, it becomes necessary to calculate thermal resultants separately.

4s noted in Section 1, Equation 1-6, the definitions of the thermal resultants

are:

E, (a, +v._a.) T E (a.+v,_ a )T
| Eo % * V46 % o %0 * Vg0 %
Bry / e G| My " / T~ s

Voo Voo 00 “o¢
Eg,(da * Vg, QQ) T Eq (ae * Voo a¢) T
Neg = T - v . v o | Mpy = T -v. v 5dg
%8 8¢ $8 6¢




The temperature is defined to vary linearly as follows:

=== =Neutral Axis

where T is the stress-free temperature. Combining Equations 3-8 and 1-6,

the necessary thermal resultants are obtained.

GRTHOTROPIC SINGLE LAYER

E. (a. +v.. a,)fh
: 1 NN (ﬁi) rrii * e * Toe * Too - hT]
" Ve0 Voo

(a

h
2 1 ? e (Tl) rrii * Tic * Toc * Too - l“‘]
= Voo Voo '

Ey (ag ¢ eo a,)

B

1 - v

et

(a

[2T11 * “ Toe © eTooI
2Ti

1l - VQO 0e

E, (a oe“e’(.x_[
2L

+ T, =T - 2T ]
ie o¢ 00
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EQUAL FACE SHEET SANDWICH

Le(aa¢u
1 - v

99
YT

+

Ys0 “ae

+* Vv

= o
o = 2 v (T,

a ) |h
95 8 i (T,, + T
veo 2 it

\)¢e

* Vgy %) h12 = h02
Vo0 Voo (2‘11 *Tie - 3T) -e (2Too * Toe

thy - thy =
* = (T“ + Tic - 2T) - - ('l'oo . Toc - 27)

E (a, +v..a) ] n? n°
¢ ¢ 46 "8 i _ __o -
1 - V46”09 [T (ﬂii * Tie ki) T (2Too + Toe = 3T

tth th
* =3 (Too * Toe - 2T




where:
ho2 - hie + 2hot
by =& - by = > {h, +0)
1 [o]
hi2 - h02 * oht
o T % ho = 2 (h, +h )
1 ]

ARBITRARY STIFFNESS PARAMETERS (K AND D)

Since the geometry is not known in this case, certain assumptions are
necessary in order to calculate the thermal resultants. The given stiffnesses

are set equal to equivalent single sheet stiffnesses:

E h -E h 3
K = 8 eq "0 eq D.. = 6 eq & eq
= i =
11 Veo Voo 11 12 {1 V40 VOQ)
Ir this wayEg eq and hg eq and similarly in the ¢ direction, E¢ eq and h¢ eq

cun be calculated. Substituting the values thus obtained into Equation 3-9:

K.,. (a, +v,, a,)
wo o= 21 e 8¢ o [T. +T, +T +T - hT] (3-12)
Ta L ii ie oc oo
Kss (-;n® * Voo ae) _ V3
Npp = N [Tii *Tie " Toe * Too - T]
(~k..D. . 1* (a v, a,)
" 11711 G 8¢ ¢ 4T =T =2T
JTc T [2T11 ie oc 00
]
_ (KypDap)* (ay + vy, ag) -
Yy T [2Tii * Mo~ Toe = %o
w3

Thus, in this case the thermal resultants to be applied are obtained on the
basis of equivalent stiffness sections, and are then applied to the original
~*ructure. In inputing the stiffness parameters K and D) one must remember
*hat they are functions of material properties, and thus functions of
“ziperature. The negative definition of the bending stiffness, D, is

used to be consistant with Section b and Appendix A.
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STRESS CALCULATIONS

The stress formulas to be used are given below:

. %in
in

Configuration

s——)
—— 1

Orthotropic

— 0
=,

equal face sheets

2 2
hi + ho + 2hih° + 2h°t

L

unequal face sheets

2(h, + h )
i <)




In addition, the Huber-von Mises-Hencky effective stresses will alsc be cal-
culated.

2 2 2
o = ol - g o + 0 + 37 (3-1L)
Fin v// ein ein ¢)in ¢in ¢ein

g =V//c 2 [¢] o + g 2 + 37 2
Fout eout eout q)out ¢out ¢eout

These stresses are not useful for design or failure criteria, since such

criteria are material dependent. However, they are useful for comparison,

since they comoine all stress components in a consistent menner character—

ized by a single number. Stresses for the arbitrary stiffness parameter

(K and D) case are calculated using the appropriate Hooke's Laws of shell,
ring, or stringer.

Approximations to core transverse shear stresses in a sanuwich shell will
be calculated as follows:

Q
. = 2 (3-15)
5o t

1 Qe
;o t
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Top Ellipsoid

Specify a, B =

P o

Bottom Ellipsoid

Sphere

Specify a, B = 1
or use ogive with
r =a, cC=0

- Figure 3-1. Ellipsoid
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Specify F1e C<0

Figure 3-2. Ogive
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be]
Parebola 1z = fl + fzr + r3r

Specify fl' 159 f3

Figure 3-4. Paraboloid
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Figure 3«5. Cylinder
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Standard Cong
i Specify ¢ > 0
8
i
out
’ \
J

" 8% Jut Elate
-9 1 in J Specify ¢ = 0
|
J
out
: { in Inverted Cone
Specify ¢ < 0

Figure 3-6. Cone
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SECTION b

EQUATIONS FOR ORTHOTROPICALLY REINFORCED SHELLS

As mentioned in Section 3, the differential equations are written in terms of
stiffness perameters since a variety of wall crossection geometrles are to

be considered. There will also be cases allowed in the program, vhere

the stiffness parameters are input directly. Since this option will mcst
often be used to describe reinforced shells, the eccentricity of any re=-
inforcement must be taken into consideration. To this end, séme of the
differential equations derived in Section 1 must be revised, since new
stress-resultant to strain relationships must be used. In the case of

orthotropic shell reinforcement, this relationship “ecomes as follows*:

Ne = Ku‘o . K12 € " ane - Nng (L-1a)
Q [}
- C - (1PN
No = K22c° + Kel €q <,22k° "To (li=1b)
Qo Q
NM = NN = K33 Y“’o (belc)
) Mg = Dyjkg * Djok, * Cu‘eo - My (b-14)
(o4 - e
M, = Dypky # Dy kg * "2t Mre (4-le)
Moe s . ,(00 = -2033k08 (b-17)

As can be seen, due to the eccentric reinforcement, Ne and §, are functions

{*‘i.!‘

¢
of curvatures, and Me and M0 aiso depend upon memtrane strain. This was not

the case in Equation 1-8,

® Refer to Appendix A for der!:ation and definitions of K, C, and D 3
parameters for several cases.
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The new Equation L-l thus requires a change in four of the original
differential and auxiliary cquations formed in Section 1. These changed
equations will now be obtained. By comb.ning Equations l=1lb and l-le
first to eliminate k, and then again tc elim.uate €y 0 the following dif-
ferential equations cen be obtained: °

vy c..2\! ¢ K

.;i [ 3 %I + K22 + Dz: 'N’ + "T¢ + 3§§ (MO + M%‘ ) - ;El u.e + v cos ¢

(’.’2:2 D

- w ain 0) - <5 21 -=5 {v.eo +u,, sin Ql * W S%;.! (b-2a)
22 Ty 0

-1 K K
2 22 el
—) ‘u‘ +* NT’ - 62—2- (H’ + ur.). ;—o— ‘.I'e +* V cos¢

K.,D

22721 11 coe ¢

- w 8in 0) + "E;;"[;'E'l"oe + u.0 ain 0' ® wy ’o :]} (u-2v)
0

Utilizing the above solutions in Equations L-la and L«ld, the new auxiliary
aquations are obtained.

C
22
e * Dy, (Mo * Kro); )

C

21~1
22 ) -
[K22 + 5;;-] (u.o 4+ 7co8 ¢ ~-vsin

. -1

e+ 512 %02 P [x . c222] 2, "
2 22 21 22 \

11 b, 22 * B, i

+ Uiy sin 0} + we ;gz-!




-1

,] Uy # vV COS & - W sin c)

-1
K..D K_.D
1272221 P27 22 1 [ } cos ¢
- e | C b —— Wa .t U, Singl+ w, ————
c22 [ 22 022 ] (’05 00 8 o r, )

(L-3b)

The Equations L4-2 and L-3 are the four equations which must be substituted
for their counterparts in the set of equations developed in Section 1, to

adapt the earlier analysis to handle eccentric reinforcement. These

revised equations are expanded in Fouricr Series as described in Section 2,
and presented for the necessary geometries below.
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8 . 22722 (n) (n) 22 (n) (n)
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8
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C Cc
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o * Ko (K92 - ) ‘"o * Ny D—( * Moy )’ Y7o
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’(s cit [ - slzoilo ) (e) cos ¢ - w(n) sin ‘)
K..D_.C .
12 21 22
-1C, ., + =——— K nU ltn ¢
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R LY e ans
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(n) KooPo2 (n) _ %22 ¢ (n) (n)
My =Dpo (sz C.n ) SN +NT¢ T, (M¢ * Moy )

-1
c
T AN U E E 1% c s Ko2P22 (nU(n)
QTB s cos ¢ S cos ¢ 22 [

22
D, K, D
v aos - W) i ¢) s (o - 12022 rell:c22
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k p -1 (n)
. 2(2: 22] _1 - {nu(“) sin o - n2‘“'(n)} e (4-64)
22 s“ cos ¢ 8

Although the stress-resultant to strain relationships (Equations L-1)

were der ved in Appendix A on the physical basis of eccentric orthotropic
shell reinforcing, they can be used to describe other shell wall construc-
tion as well. This is possible in the program since the parameters K, C,
and D are direct input. It is only necessary to use the proper formulas
in-place of those given in Appendix A to calculate the stiffness
parameters which are to be input. Although in Equations 4-1 membrane
forces are dependent uporn curvature and moments upon extensional strain,
these equations are not completely general, and thus cannot be used for
arbitrary layered shells. Fully general equations, adapted specifically

for layered shells, can be obtained in Reference 8.

when the reinforcement is not eccentric, simpler equations than Equations
4-4, L-5, and L-6, can be applied. The necessary equations for this

case can be derived as in Section 1, and they are presented below®:

® [n this case the Hooke's Laws contain no coupling between bending and
membrane, therefore C11 = C22 =0,
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The specific type of reinforcement which can be analyzed by all the pre-
vious equations has to be placed coincident with the coordinate axes of

the shell (® and ¢ or s). More complex reinforcement, such as waffle

construction rotated 45 deg from the coordinate axes, must also be
analyzed on the Saturn SII stage. The specific integrated Hooke's Law
relationships for this case are given below (derivations and stiffness

parameter definitions can be found in Appendix A):

Nq =K o, " Ko o, " Cyy (kg + ky) - Noyg
N, = Ky, E°o + Ky 590 - Cyy (kg # k¢) - Npy
Yo =Ks3 Yoo, " 211 K0

4-9

(L-9a)

(4-9b)

(L-9¢)

(4-94)

(L-10a)

(L=10b)

{4-10¢)




Dyykg ® ' (4-104)

D22k¢ + D, kg + c - (L-10e)

= -3k * O11 Yoo, (k-10f)

Equations L-10 will also necessitate a change in some of the auxiliary
and differential eguations derived in Section 1. These revised equations
are given below. Eliminating k¢ and E¢o successively from Equations
Lk-10b and L-10e we obtain equations for v,¢/rl and we,¢/r1. Substituting
these equations respectively into the equations obtained by subtracting
L-10b from L4-10a and 4-10e from L4-104 we arrive at equations for Ne and
Me. Finally, equations for u,q)/rl and M¢9 can be obtained from 4-10c and
4-10f, and Qe is obtained from equilibrium. Thus the revised equations
are provided below, already expanded in Fourier Series, for the

necessary coordinate systems:
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SECTION 5

SEGMENT STIFFNESS MATRICES

For each segment of the shell, we will require a relationship between the
edge displacements and edge forces in global coordinates. These are ob-
tained as stiffness matrices which are to be used in calculating the
elastic interaction of all segments making up the structure. The global
components in terms of the local coordinates are, in accordance with
Figures 1-1, 5-1 and 5-2.

{F()} = [1r] {2(1)]

[r} = [ore] {2(0))

{a(0)] =[107] {6(1))




AT +1 0 0 O u )
AZ 0 -8) -¢j O v
{ats)} = [oor] {8(5)} (3) = (3)  (5-b)
AR O +cj =-s) O w
Qe L 0 ¢ 0 +1 | \ wg

Where the letters in the I Force Transformetion and J Force Transformation
matrices are sines or cosines of ¢ior ¢J’ the meridional coordinates of
the beginning and end of the segment. (Similarly for the Displacements.)

These transformations hold for functions F(6,¢i or J) and A(e )

0 ’¢i or J§
n
as well as for the amplitudes of harmonics, F (¢

i or ) ond

(r) (9. ). Only one harmcnic at a time is considered. Thus,
ior J

the transformation matrices are buxl,

The set of influence coefficients represents the general solution of the
boundary value problem for conditions imposed on the edges of the segment.
In addition, there is a solution corresponding to each distributed loading
on the segment., Since the differential equations are linear, we expect

a linear relationship between segment edge forces and displacements.
Further, the edge forces for zero displacements are linear functions of

the loading for each problem. Thus we ucek matrices [k] and [1] such that
s (ie) 2 (ip
[F jp] [ i ] [ 3 El Jp] -2

The quantities [¢] are the "fixed end forces" due to unit value distributed
loads; that is, the forces at the ends when displacements are zero and

the distributed loads are applied. The indices i and } indicate the be-
ginning and end points of the segment. When automating the theory, P will L
be set equal to 10 in order to obtain the capability of analyzing a single

structure under 10 consecutive loading conditions within one machine sub-

mission.
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The differential equations are solved by Runge-Kutta forward integration
for different sets of initial conditions. Since there are four boundary
conditions for each edge, we would expect eight separate solutions to be

required to construct the 8x8 stiffness matrix.

Additicnal solutions
are required for the distributed load.

For simplicity, these solutions
are obtained by assuming & unit value of & force or displacement.

The
procesc is schematically outlined in Figure 5-3. In columns 1 through U4,

successive unit values of local displacement with zero forces are assumed

In columns 5 through 8, the unit forces are applied and the displacements
are taken as zero. In further runs, the initial forces and displacements

ere both set to zero and the distrituted load cases are applied. The solu-
tions are obtained simultaneously by applying all the initial conditions
at once as an 8x18 (maximum) matrix into the Runge-Kutta intcgration
scheme. Each initiasl and load condition then will become an equation as

the matrix proceeds through the Runge-Kutta integration to the final values.

It should Le noted that these assumptions, choosing both forces and dis-

Placements at one boundary, are not inconsistent. It is permissible to

specify four on each edge, or to give all eight at one edge (or any inter-

mediate combination). The forces f(J) arising at the Jth edge due to

initial displacements, 1, and forces, 2, at the ith edge, and distributed
loading, 3, are recorded in the matrix

Lx({8+P)

Similarly, the displacements §()) are recorded in the matrix.

Lx(8+P)




where. P is the number of external loading conditions (maximum = 13).
Thus, the forces and displacements at the Jth edge may be expressed in
terms of forces and displacements at the ith edge. For simplicity, the

maximum case of P = 10 is used, therefore:

F(J)} JFT {f(J)] e x, ! x. ! x 8(i)
{ [ ] [ ] [1 |2 3] £(1) }(5-6)
Lx1 Lxk Lx1 Lxk L4x18 [3
18x1

{A(j)’ [JDT] {6(3)} [JDT] [Yli Y, ' y3] {g&;}(s_”
bx1 Lxh Lxl bxly Lx18 ;le

From Equations 5-1 and 5-T,

[re)j = [rrr] [y} ([JDT]T (a7} - [yl {s)] - {rq) [n})(s-e)

From Equations 5-6 and 5-8,
(r(n)} = [orr] [x] (st} + [orr] [x)) v, ([m]T {a()]

St] (5] - {al(s) el )iy (5-9)
Using Equations 5-5, 5-8, and 5-9, and transforming the (8) matrices to

{A) matrices tv Equations 5-3 and 5-U4, where necessary, we obtain for
"P" loading conditions:

5“ L] - -k_(ii)_i k(1J) ; 2(ip)
x(8+P) k(31) 1+ k(33) 1+ elIp)_
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As can be seen, it is necessary only to invert the Uxl matrix Y2] in
order to compute the matrix of stiffness [k] and fixed end forces [2] .
Equation 5-10 is actually a more compact matrix formulation of Equations

5-8 and 5-9.

SOME STIFFNESS MATRIX [k] PROPERTIES

In the reciprocity law, the integral of forces must be used, thus, in the

linear case, the stiffness matrix [k] ,» is symmetric in the sense that

ki) = [kG]T, (kD] = [x(35))7
and
r (1)
[k(ji)] = rz(J) [k(ij)]T

(S T N S Y Py

and

A & 2nr0(i) ; ] (te)
T-ano(.j) t3p)
- | ~




A
so that [F]

where F(i) i , 2ﬂro(i) F(i)
Y Bt O

F(3) 2nrO(J) F(J)

(5-11)

>

A
Where "F" is in units of force/unit length, and "F" is measured in units

of force.

IDENTIFICATION OF SEGMENT PROPERTIES

In order to identify data in the subsequent discussions and in calcula-

tions, the following notation is introduced.

v W TR T ERTY W e

s[/F\](n) . s[/l}](n) S[A](n)+s[£\](n)
or, in greater detail,

VS

\ ' AN
F(ip) | k(ii) : k(1) | ™ atip) | 2(ip) |
—_—— = |—m——t - - —_ $ |=—-
F(Jp) k(31) | x(39) AlJp) 2(Jp)
s s i s s
8xP 8x8 8xP 8xpP
(5-12) -\
where the following symbols are used: i
S,1,) The sth segment connects Joints i and J. The i and J appear

in parentheses next to the main symbol. Right-hand subscripts

e e I A i TR 8

are reserved for component directions or total and reduced .
stiffnesses.
n Fourier harmonic
A Denotes total force
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HARMONIC JOINT LOAD PHYSICAL CHARACTERISTICS

The expansion in a Fourier Series results in a separation into physically

distinct effects. The 0th term (n = 0) is the axisymmetric case. It

includes net axial forces and net torsion. The first harmonic (n = 1)

is the antisymmetric case. It includes net lateral loads in the X

direction, and net moments sbout the Y axis. The remaining harmonics,

n =2, 3..., are self-equilibrating systems.
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Figure 5-1. Typical Shell Segment
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Figure 5-2.

Forces on Typical Shell Segment
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Unit Unit Distributed Load
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Applied Applied loading cases)
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Figure 5-3. Calculations for Stiffness and Load Matricea
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SECTION 6

STRUCTURE MATRICES AND STIFFNESS ANALYSIS

In order to calculate the interaction of the segments comprising the
structure, the "direct stiffness method" is used (References 5 and 6).

Familiarity with this method will be assumed in the following discussion.

To increase the capacity of the program, the shell segments will first be
coupled into regions. These regions are defined as singly-connected shells
with no internal concentrated line loadings (Figure 6-1). The next step

is to constrest the region stiffness matrix é; and the matrix of fixed-
end forces [LR]. This requires splitting each segment's [k] matrix into
its four Lxl matrices and inserting the portions into the region stiff-
ness matrix in accordance with the topological arrangement. The [1 ]matrix
is similarly split into two L4xP matrices. Thus, in addition to the geo-
metric description of each segment, its position in the assembly must be
specified. To this end, all segments begin (i) and end (J) at a Joint.

The st'h segment 1s said to connect the ith and jth Joints. (Not the Jth
and ith Joints, since direction of increasing coordinate within the segment
must be from i to J). To allow for the possibility of discontinuous
centerlines within a region, kinematic links must be included. These links
are rigid pieces which relate displacements across a discontinuity. Thus

a kinematic lirk matrix [SKL] must also be formed. Due to the topology and
line-load requirements for regions, the equations of the coupled segments
will be the following:

Fir : g Lim ]
Kyp v Ko
|
Fin | 4R Lim
I BB I I I I B S (6-1)
(8xP) (8x8) : (8xP) (8xP)
|
L o J L¥a v x| L & ] R

6-1




where-
- /:\ - . ‘/'\’ . : -
K ! K12 K'a ! Ko KLy : 12
o) =] s | e e
' H i
! ] | 1] !
SRR K'ayp 1 Ky KL,y } SKlpp
DT T |
iR1 iR
- L'
Lip SKL IR .
L . R T S A

and where iR, JR refer to the region initial and final points, and the
[A], [K'], and [L'] are the deflection, stiffness, and load matrices of
internal segments. If there are no internal kinematic links, [SKL] will be

an identity matrix., Partitioning Equation 6-1 will yield:

QNSIORSIEES
[+ - (2B ()0 -

Solving Equation 6-2b for [A] and substituting into Equation 6-2a yields:

(2] = (101 * [fr] (6-3)

8xP 6x8 BxP 8xP \
where )

%1 = i1 - (1210 %)

(] = il - (1™ () '

The next step is to construet the total structure stiffness matrix EQ]T
A
and th= matrix of fixed-end forces [IJT. This again requires splitting
A
each region's [KR] matrix into its four 4xlL matrices and inserting the

o L

6-2




portions into the total stiffness matrix in accordance with the topological

arrangement of the structure. The [LR] matrix is similarly split into two

L4xP matrices. Thus, in addition to the geometric description of each
region, its position in the structure must be specified. To this end,
again ell regions begin (i) and end (J) at a joint. The s'P region is
said tc connect the ith and Jth Joints. (Not the Jth and ith Joints,
since direction of increasing coordinate within the region must be from
i to J). If there are M Joints, the total stiffness matrix is LMx LM,
since there are four degrees of freedom at each Joint. Hence for

equilidbrium at all the Joints,

~ s A
(i = Xk [k * [} (6-4)
LUMxP LMxLM  uMxP LMxP
where M is the number of joints, and subscript T denotes Total. This
equation characterizes a structure free in space. The singularity of the
matrix [K]T for axisymmetr‘c and antisymmetric (n = 0, 1) cases may be
physically interpreted. The stiffness matrix permits calculation of all
iorces due to all displacements; thus the inverse would relate displace-
ments to forces. But the displacements are not unique, and one valii
solution may differ from another by rigid body motion. Hence, we cannot
expect such a relationship to exist; the mathematical manifestation is
singularity. However, the total stiffness matrix of a complete shell of
revolution need not be singular. For harmonics greater than unity, the
rorces are self-equilibrating systems and, since the displacements follow

the same pattern, there can be no rigid-body motion.

REDUCED STIFFNESS

It is necessary to specify restrictions on the displacements such that
rigid-body motions are prevented or specitic support conditions are met

This is done by means of a "Boundary Condition" matrir [Bc(v) ] for the
th iy

L boundary condition,

fetel}, = [Bcv))] {ao)}, for qSuM

LMx1 LMxq qxl




where q is the number of degrees of freedom, subscripts T and F denote
Total and Free. The displacements {A(b)}T are in the global coordinates,
T, Z, R, Q,. The free, (non-zero) displacements may be in the global
system, or they may be rotated through some angle. This may be done,

for example, to provide a roller-on-a-ramp restraint for an edge. The
[Bc(b)] matrix ccnsists merely of an identity matrix without the columns
corresponding to fixed coordinates. If, however, *here are some rotated
coordinates, trigonometric functions will appear. In addition, there

may be specified relations between the displacements of one Joint and
another. This occurs (for example) at discontinuities in thickness or

at multiple discontinuities. The [BC] matrix is developed for the simple
structure of Figure 6-2a. We have an assembly of conical shells with a
discontinuity in thickness. At the discontinuity, the median surface
shifts and a kinematic link (2-3) is needed, as shown in Figure 6-2b. The
upper edge is attached to a very heavy boss. The lower edge is to be
supported by membrane forces. Let us assume that the load is distributed

axisymmetric pressure.

The displacements at each of the free joints are given in Figure 6-3.
Joint 3 is kinematically dependent on Joint 2 as indicated by algebraic
relations. Joint 5 is a support point where membrane stresses are
assumed to exist. The coordinate system is, therefore, rotated 8o that
the edge is supported on "rollers'. Instead of A and Bps we have 4

Z

and AC’ the meridional and normal components, where

v -sin ¢ +cos ¢ AZ
(6-6)
[ AR

$

-cos ¢ -sin ¢

At Joint 5, ¢ = B8, and we set A45 = 0 for support. We see by inspection

that the structure is statically supported for all possible loadings. If
this is not true, the reduced stiffness matrix, which relates forces to

free displacements, will be singular.

low let us construct the boundary condition matrix [BC] for this structure.
Assume that the tangential displacement is zero at Joint 5 but that others
are free to move (although they will not displece under pressure loading).

6-4




%erall that

(6-7)

Then we have

{8}
qxl

{a}, = [&c]

LkMxq

LMx1

and in greater detail:
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NOTE

There is a blank row for each displecement specified as
zero (fixed). There are no components for the dependent
Joint 3 in the right-hand éide. The kinematic relations
are given in the [BC] matrix. The meridional component

4 (5) does not appear since it is fixed. But the per-

¢
pendicular component AC(S) contrivutes to both AZ(S)
and A_(5).

R

By a similar procedure, it may be shown that the forces in the directions

of free displacements may be expressed in terms of the total forces. This

relationship is

A T N
{Flp = [BC] {F}T (6-9)
Corresponding to A° and AC’ there are free forces F° and F(. In the
example, they are equal to 2ﬂr0(J) N¢(J) and 2ﬂr0(J) JO(J)' If applied
thn

at the 1 edge, there would be a change in sign. In general though,
the direction dencted by ¢ and ¢ need not be related to the shell. It

is specified separately.

Thus, from Equations 6-l4 through 6-6 and Equation 6-9:

Fle = 11" (K 1) fofp + ()7 {2}, (6-10)

f/}}h? = [/K\]F L {?}p (6-11)

ot = (e (Fle - {Tie) (6-12) :
where ~

(B = (6-13) .

1he total displacements are then calculated from Equation 65

b =[] fo)e (60
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Thus for the region ends, combining Equations 6é-14 and 6-12

{2} = [5¥] [?]F({F\}F - {L\}F) (6-15)

and in the interior of each region, for each segment

{8} = [SKL,,) t_ [K;]-l ([le] {og}+ [/L\])} (6-16)

FINAL STRESS DISTRIBUTION

We must obtain the forces and displacements at the ith edge of each seg-
ment to use as initial values in the integration of the differential
equations. Since the variables in the differential equations are given

in the local coordinate system, from Equation 5-3, we seek
. T A
fscorp = [or]” fai)}
From gquations 5-1 and 5-5,

fe(i)} = [IF‘T]T([kii E kij]{'g'(-‘%%'l !l(i)l) (6-17)

where the A(i) and A(J)) are obtained from Equation 6-16.
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Figure 6-1. Example of Region Topology
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Figure 6-2b. Idealization

Figure 6-2. Shell Structure and Idealization
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SECTION 7

AXTSYMMETRIC NON-LINEAR ANALYSIS

The previous sections all dealt with linear shell analysis. Geometric
non-linear effects in the axisymmetric case can be included by the
use of a simple iterative analysis and some additions to the shell
equilibrium equations, The revised axisymmetric (n = O) equilibrium

equations are as follows:

INDEPENDENT VARIABLE, ¢

. (0 .
$8,0 o7 (0) cos ¢ _ M (0) cos ¢[l_ _ sin ¢]

rl $6 ro ¢6 rO rl ro

n (0) sin ¢

(0) cos ¢ (0) cos ¢ (0)
My B TR

where the nonlinear terms are defined as follows:

_cos ¢ [=(0) . (0)
]




=,
"

These terms are essentially components of the membrane forces and the

pressure loads in directions normal to their original lines of action

(Figure T-1).

Similar components of the transverse shear forces, Q

6

and Q¢, also exist, but for thin shells they are usually neglected

(Reference 3).

The equations specialized for other geometries are:

CYLINDER

(0)
dT, o
ds

dN (0)

4 __ =
ds

(1-3)

o o

:
:
i
%
&




where the nonlinear terms are defined as follows:

-y (o) o (o)

¢ ¢




wwew

(]
(0) (0) (0)
f¢(o) ) F¢(O)(l LV Wlan ¢, av ) Fc(O) 2,0
(0) to) (0)
rc(o) = FC(O) (1 N A tan ¢, 45 )+ F¢(O) Qe(O)

The capital F's in all the above equations are the actual distributed

loads applied to the shell structure.

In this presentation, the capability for axisymmetric non-linear torsion

aralysis is omitted.

The numerical procedure used to solve these differential equations is
entirely analogous to the linear case describded in earlier sections.
The equilibrium equations given herein are coupled with equations
obtained from Hoocke's Laws and the strain-displacement relations; for
instance the latter portion of Equations 3-1 for unreinforced shells.
The matrix procedures described in Sections 5 and 6 are then utilized
as previously. First, however, the equations are linearized by
assuming a value for ﬁ;. This will also destroy the symmetry of the
"stiffness" matrix, since Maxwell's Law of reciprocity holds only for
linear systems. In the mathemetical sense, we may now regard this as
an arbitrary linear boundary value problem, since the equations have
been linearized by the assumption of ﬁ;. Thus the "stiffness” matrix
[k] now simply represents the quantities {F} as a linear combination
of the quaatities {A}. Of course, it is understood that the relation-
ship is linear only for the special loading case which produces the
particular assumed N, value. Thus for the non-linear case, use of the
matrices [k] in Sections 5 and € may be regarded only as elements in
matrix algebra, and no assumption of symmetry is required. However,

the physical interpretation still exists in the linear csases.

The iteration procedure for a non-linear analysis would then operate
as follows:

1. A value of N¢ is obtained for a first spproximation. This

7-4




vaiue may be obtained by & hand computation utilizing membrane theory
or a full linear bending sclution of the problem.

2. Utilizing this value of ﬁ; a3 a constant, a solution .
obtained for the linearized system of equatiocns.

3. The solution for Nofrom step 2 is compareu with the assumed

ﬁ@. If the agreement is not close enoughr, *he N¢ value is used as the

new assumed ﬁ;.
L, Steps 2 and 3 are repeated until the agreement cf N¢ with ﬁ;

is within the accuracy cesired.




Figure 7-1,

Non=Linear Effects
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APPENDIX A

DERIVATIONS OF INTEGRATED HOOKE'S LAWS

One method of obtaining the necessary relationships between stress-

resultants and strains for eccentrically reinforced shells is basically

an "equivalent energy" approach. First we obtain the energy of the com-

posite system in terms of stress-resultants and strains, and then equate

it to an equivalent shell erergy expression. Since the necessary

equations for an orthnotropic sheet are known (Equations 1-7 and 1-8)

only the equations for the eccentric stiffeners have to be cast in the
proper form.

Consider the strain energy of a circumferential rib:

L 2ﬂro Ee . GeJe 2ﬂro )
Uy = pX / / T e < dh a0 + — / Ko 49 (A-1)
k=1 0 Ae T 0 k

where n is the number of circumferential stiffeners, and the rib is
assumed to have the same twist as the shell. If the stiffeners are

spaced a distar.ce Se apart, Ejuaticn A-1 can be rewritten as:

S 2nr

on

__ L. _6_9 _

= /' / /2 o dAede : / a0 |as (a-2)
0

Substituting for the total strain in terms of centrofdal strain and
curvature, and using the assumption that the stiffeners are integrally

connected to the shell and remain so after deformation, we obtain

L S 2nro GeJe 2ﬂro .
U, == / / _§(c -ck)dAdB-r / k8¢ de | de
] Se / 0 A




Simplifying:

Similarly, the stiffeners in the meridional direction have a total strain
energy of:

. S 2nr0 E°A¢ . EQ
U¢ =3;_/ / 3 s@o - E0C¢A¢c¢ok¢ +
0 0

G J
be, 2
+ S k¢e d6d¢

The strain energy expression of a particular shell sheet is

2nr

1
Us’z/

0

o S
J/-<Neee + NOEQ + N¢6Y00 - Meka - M¢ k0 -2M00k¢6 dede¢
0 o [] o

(A=5)

Equs*ing like terms of Equations A-3 and A=k to A-5 we can obtain the

additional terms to expand Equations 1-8 which were written a3
Equations 4-1 in Section b.




area of reinforcement

eccentricity of reinforcement trom shell middle surface

(inwards positive)

I moment of inertia of reinforcement about besic shell cemtroidal axis

J = crosgssection twist constant of reinforcecent
S ® spacing of reinforcerent

subscripts 8 or ¢ indicate coordinate directions, and subscript R refers

=5

to reinforcement properties.

gl

i'ig‘




Thus the stiffness parameters in Equation 4-1 are defined as follows:

EGRAG E A
+ =3 (a=T)
8

Utilizing the orthotropic identity, Kl2 o1 12 = D21.

The Equations A-6 are somewhat approximate. Firstly, since the re-
inforcement properties are "smeared", the equations will not be accurate
where the reinforcement is widely spaced. To this end, when loading a
shell with a high circumferential harmonic (n) loading, one should check
if the load peaks attain closer spacing than the reinforcement. If this
is so, the Equations A-6 are not applicable. The load patterns should

similarly be checked in the meridional direction. Secondly, due to our

first order theory assumption that M09 = —Me¢, the torsional constant is

only sapproximate in cases where reinforcement properties GJ/S are not

equal in the two coordinate directions.

A-4




The above derivations are valid when the reinforcement coincides with the

coordinate directions of the shell. If the reinforcement is rotated,

such as in a waffle oriented at U5 degrees, extensive revisions are

necessary. OSuch equations, applicable only to a 45-degree waffle

construction are derived in a different manner t=low (Reference 9).

The rotated rib grid stresses are:

tER
oy =53 (ee + €®O) - (k¢ + ke) =0,
(A-8)
= EEE - 2Tk =1
90~ 25 Yoo T e 84
o When the above equations are integrated and added to the sheet stress
B resultant Equations 1-8, the finasl set is obtained.
Egh [ 7 EpA ERAC
. N, = c—— |2 + v .¢ + (e +e ) -5z (k, +k) -1
. 8 1—\)¢8\)g¢ i N 8¢ %_} 23 8, ¢, 2s 8 é T6
’*,s; (A‘9>
E¢h B 7 ERA ERAC
N, = ———0u|¢ + v, € + (e +eg, ) -=—(k, +k,)~0N
. ) V4660 L %o 409, | 23 8, ¢, 28 8 ) T¢
= E_A EpAC
¥ —_ -
Noo Gcbehyqseo T35 Yo 5 Koo
.
7 3 -
) -Eeh i ERI E_AC
3 Mo = Ta(aou, v V| Fe * Ves¥s | " 35 (K ) * 55T (eg te ) - My
60 66" L _ o
o End T 1 Bl ERAC
_ o
’ M= k +v k - (k, +k,) + (e, +¢, )~
5 o T 12(1-v gy )| e T Tee 8] 2 e " Ve T 2s 8 ¢ Hrg
! -G, b E_I E_AC
M= 8 B R
: 8 6 46 S T¢8 28 96

.
I3
%
1




where A = area of reinfcrcement

(¢}
1}

(inwards positive)

eccentricity of reinforcement from shell middle surface

I = moment of inertia of reinforcement about basic shell centroidal axis

S = spacing of reinforcement

and subscript R refers to reinforcement prcperties.

Thus the stiffness parameters in Equation 4-10 are defined as follows:

E h E_A

12 l—v¢eve¢ 25
c ) ERAC
11 28
-E h3 ET
D = e _-R_
11 l2(1-v¢eve¢) 25
3
5 _ -ve Eeh ) EEE
12 12 1—v09v6¢ 25
3
G, .h E I
D -_-,—-Q—e——-f._R—
33 12 28

Eh E A
¢ R
K,, = + (A-10)
22 l—v¢eve0 2s

21 *

=
)

33 = Spe® * 35

3

-Eh E_I

D =__Q___R_
22 12(1-erve¢) 2s
-v,. E h3 E. I

D =_{_§LL’._—
21 T 12 l-v¢eve¢ 2s

Utiiizing the orthotropic identity, K., =K, and D, =D

12 21 i 21°




APPENDIX B

AFPLIED EDGE LOADS

In utilizing the prcgram, It is frequently necessary to apply forces at
the edge of the structure. We first note some relations between the
internal stress resultants and global forces in tne rotated system. He-
ferring to Figure 5-2, we see that it is necessary to distinguish be-

+
tween the ith and J'h edges of the loaded segment. For any harmonic n,

N {n) L (n)
FT(J) -1 0 0 © T¢9(J)
F (i) 0 -1 o 0 N (i)
¢? =z ® J (B-;)
1 1
c(J) 0 0 -1 o Jq> (J)
i i
M (J) 0 0 0 +1_ M¢ (J)

where the * corresponds to the Eth

.th

edges.

As in Equation 6-7 for rotated displacements, the rotated forces are

given by
. (n) _ (n)
FT 1 0 0 0 FT
FZ 0 =s¢ -c¢ O F¢
= (8'3)
FR 0 +¢c¢p -s¢ O FC
M | 0 0 0 1 M

We now relate the resultant external loads (~) to the magnitudes of

These will involve only the 0th and lst harmonics.

distributed ioads,




L. B 3

AXISYMMETRIC LOADS (n = 0)

We may write directly

t-
ey (@
| F ~ T
VA FZ 0 1 0 0O FZ
_ = 2ﬂr0
MZ Ty 0 0 O FR
M
/ (B-4)
+X Qy

ANTTSYMMETRIC LOAD (n = 1)

Here, the integration of the distributed forces is not obvious.

on 2n
i"x = f(—FT(l)rode) sin 9 + f(FR(l)rode) cos 8
0 0
¥, = [_FT(l) . FR(l)]
on on
M, = /(- FZ(l)rOde) (rocos ©) + f(M(l)rode) cos 8
0 0

ﬁ& = [-ron(l) . M(l)]

t
(1)
Fp
Fy -1 0 +1 of\F,
. snro
My 0 -ry 0 ¥ | Fy
P~ -~
Fy M M
(&-5)

+*x

B e




SPECIFYING LOADS

When the loaded edge has standard coordinates, Equations B-4 or B-5 are

used to determine the forcves ¢, F_, F_, and M in terms of the net applied
T A R
loads, Tn the axisymmetric case, this is straight forward; contributions
to ?é are made only by F7(O) and there is a similar relation between ﬁé
(0)
and FT .

However, in the antisymmetric case, there are four unknowns and only two
equations. Thus, additional data is required. Often, these loads are

/a0
applied in a region of assumed membrane stress; then FR\l) = 0 (cylinder)
\
or Fz(l) = 0 (plate) and M(l‘ = 0, since these are transverse shear and

bending stress resultants.

When the loaded edge has rotated coordinates, use of Equation B-3 with
B-L and B-5 yields:

(a)

T
FZ 0 -s¢ -co O F¢
_ = 21rro (5-6)
MZ I‘O 0 8] 0 FC
M
and
(1)
FT
FX =1 +cp =s¢ O F0
. = mry (B-T)
M
¥ 0 ros¢ r0c¢ +1 FC
M




In the axisymmetric case, ?é nov depends on F, ani F;. For mem.rane

¢
(0) s 0. Then FT(O) and Fw(o) are uniquely determined. In

(1) | v

support, FC

the antisymmetric case, membrane support implies FC

-1 +c¢
0 +r so
(1)
T 0

= 0. Then

which permits evaluation of F

CHECKING RESULTS

It is frequently desirable to be able to calculate net loads at a cut
gection, or a huilt-in edge.

From Equations B-1, B-2, B-6 and B-1, B-2, B-T respectively we have

(0)
i
Tyl )

i
NO(J)

-cé *84

G -roto -roco +1

i
(J)/

where the sign i{s :h-sen to correspond with the edge, i or J, on which

the applied force is desired.
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